Introduction to RNAseq on Hoffman2

Richard T Wang, PhD UCLA Collaboratory

Outline

- Background on hoffman2 cluster
- Connecting to hoffman2
- Transferring data
- Software availability
- File formats and tools for NGS data
 - raw reads, fastq, SAM/BAM
- Running an analysis using DESeq and cufflinks/tophat

home > hoffman2 cluster

Hoffman2 Cluster

About the Hoffman2 Cluster

- · Real-time Usage
- . Monthly Cluster Statistics
- Current News
- News Archive

Getting started: accounts and passwords

- Parallel Computing Classes
- · Frequently Asked Questions
- High Performance Computing Consulting: hpc@ucla.edu

Using the Hoffman2 Cluster

- Access
- Computing
- Data Storage
- File Transfer
- Software

HOFFMAN2 CLUSTER

- Hoffman2 Cluster Home
- News
- > Frequently Asked Questions
- Software
- > Data Storage
- > High Performance Computing

https://idre.ucla.edu/hoffman2

Hoffman2 Overview

- 1300 active users
- 11,000 processors
- 3 data centers
- 20Gb home directory
- If your lab contributes nodes, you have additional storage space and different time limits

Hoffman2 Overview

- Every UCLA student has
 - 20Gb home directory
 - 24 run time
 - 2TB scratch space (7 day limit)
- If your lab contributes nodes or bought storage
 - priority on your nodes
 - additional storage space
 - different time limits (eg 14 day runs, all cores, etc)

Hoffman2

- Grid portal (not discused)
- Login node
 - There are 4 login nodes
 - Connect via SSH, putty
- hoffman2.idre.ucla.edu
- Requires UCLA sponsor
 - Can use Weihong Yan from UCLA Collaboratory
 - Limits on resources available w/o sponsor

Connecting via SSH

To connect to hoffman2 using ssh

```
ssh -1 username hoffman2.idre.ucla.edu
```

- To use X11 forwarding
 - On a MAC ssh -Y login_id hoffman2.idre.ucla.edu
 - Everyone else ssh -X login_id hoffman2.idre.ucla.edu

- There are 4 login nodes, do NOT do analysis there
- Upon login, you are in your home directory which has 20Gb of space

Interactive shell

- To do analysis, you can request an interactive shell.
- This is like logging into one node of the cluster and using the machine for whatever you want.
- Default 2 hours, 1GB of RAM
 - qrsh
- Default 24 hours, 1GB of RAM, interactive
 - qrsh -l i, time=24:00:00
- Requests for large resources are unlikely to be granted
- You can also do light work on a login node and submit jobs through the login node

Transfer data onto hoffman2

- Globus online
 - For transferring large file sets
 - Eg. Your data is on a portable hard drive and you want to transfer to hoffman2
- http://www.ucgrid.org/go/go.html
- http://hpc.ucla.edu/hoffman2/file-transfer/gol.php
- SFTP
 - Secure FTP
 - Cyberduck (mac), Filezilla (mac), Bitwise SSH client(win)
- Rsync
- http://hpc.ucla.edu/hoffman2/file-transfer/filetransfer.php

Data sizes

- One lane of 100x100 PE run, 100M reads = 20Gb raw data
- If your lab is a cluster member, you will have a lab-specific cluster storage area
 - /u/home/labname/username

Learn a text editor

- For working on the command line, you need to write scripts, etc
- Learn a text editor to make your life easier
 - nano is the easiest
 - vi, vim, emacs are much more powerful but challenging to learn

Available Software

- List of software tools available
- https://idre.ucla.edu/hoffman2/software
- Many tools/versions available, but not all loaded into your environment. To load a specific tool so that you can run it
 - module load <software name>
 - E.g. module load samtools
- To view all available modules
 - module available

Module command

- Type module load R loads version 2.12.2
- If you wanted a specific version module load R/2.15.1
- To unload module unload R/2.15.1
- Example

```
module list
module load R/2.15.1
module list
module unload R.15.1
module list
```

- To run RNAseq analysis, you will need to load the correct modules before running the analysis
- Example prior to Tophat alignment

```
module load tophat/2.0.4 module load bowtie/0.12.8 module load samtools
```

Samtools

```
[richardw@login2 ~/bin]$ samtools
-bash: samtools: command not found
[richardw@login2 ~/bin]$ module load samtools
[richardw@login2 ~/bin]$ samtools
Program: samtools (Tools for alignments in the SAM format)
Version: 0.1.18-dev (r982:313)
Usage: samtools <command> [options]
Command: view
                   SAM<->BAM conversion
                   sort alignment file
        sort
        mpileup
                   multi-way pileup
                   compute the depth
        depth
        faidx
                   index/extract FASTA
        tview
                  text alignment viewer
                   index alignment
        index
        idxstats BAM index stats (r595 or later)
        fixmate fix mate information
        flagstat simple stats
                   recalculate MD/NM tags and '=' bases
        calmd
                   merge sorted alignments
        merge
        rmdup remove PCR duplicates
        reheader replace BAM header
        cat
                   concatenate BAMs
        targetcut cut fosmid regions (for fosmid pool only)
        phase
                   phase heterozygotes
[richardw@login2 ~/bin]$
```

Samtools

- Allows you to look at a SAM/BAM file
- More useful for BAM files which are the output of alignment in Tophat, BWA, etc

```
samtools view bamfile.bam | less -S
```

Noninstalled software

- If it's not installed
 - Ask staff to consider installing for all users
 - Install to local user directory
 - Eg install to ~/bin directory
 - Eg. You need a particular version of software
 - You can set \$PATH to include a directory so you don't have to type
 - -/u/home/<sponsor>/<username>/<dire
 ctory>

File formats in NGS

- qseq or fastq (Illumina)
 - these are raw reads/basecalls from the sequencer
 - qseq is being phased out in favor of fastq
 - fastq 4 lines per read
 - identifier
 - read bases
 - 7
 - quality scores
 - For paired end data, you have 3 sets of files
 - read1 = first end
 - read2 = barcodes
 - read3 = second end
- BAM (aligned reads)
 - output of tophat is accepted_hits.bam
 - You can read the BAM file spec http://samtools.sourceforge.net/

For R/Bioconductor

- Need R and Bioconductor software
- Module load R
- library()
- Unfortunately, DESeq is not installed
- Set these variables. Installed packages will go here
 - R_LIBS = /u/home/eeskin/richardw/Rlibs
 - R_LIBS_USER = /u/home/eeskin/richardw/Rlibs

Linux enviromental variables

- To view variable, type
 - env
 - echo \$variable(egecho \$PATH)
- To set a variable like R_LIBS, pick a location such as your home directory
 - export R LIBS =/u/home/eeskin/richardw/Rlibs
 - export R_LIBS_USER = /u/home/eeskin/richardw/Rlibs

DESEQ ANALYSIS

Required Bioconductor packages for DESeq

- Rsamtools
- DESeq
- GenomicFeatures
- TxDb.Hsapiens.UCSC.hg19.knownGene

Install with biocLite(<package>)

DESeq

Differential gene expression analysis based on the negative binomial distribution

Bioconductor version: Release (2.12)

Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution

Author: Simon Anders, EMBL Heidelberg <sanders at fs.tum.de>

Maintainer: Simon Anders < sanders at fs.tum.de>

To install this package, start R and enter:

```
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq")
```

To cite this package in a publication, start R and enter:

```
citation("DESeq")
```

Documentation

<u>PDF</u>	R Script	Analysing RNA-Seq data with the "DESeq" package
<u>PDF</u>		vst.pdf
PDF		Reference Manual
<u>Text</u>		NEWS

DESeq Workflow

- 1. Generate reads (Illumina: 1 lane, 100M reads x 100bp = 10Gb)
- 2. Quality assessment
 - 1. ShortRead package
 - 2. RNASeQC (not bioconductor)
- 3. Read adjustments: trimming reads for adapter contamination, remove chimeric reads, ...
 - 1. ShortRead package
 - 2. Biostrings package
- 4. Align reads (Tophat, BWA, Bowtie, ...)
- 5. Importing annotation (eg gene locations)
 - 1. GenomicFeatures package
 - 2. TxDb.<species> data package
- 6. Count overlaps between reads and annotations (e.g., how many reads land in a gene?)
 - 1. GenomicRanges package
- 7. differential expression analysis
 - 1. DESeq package (DEXseq for exons)
 - 2. edgeR package
- 8. Gene set enrichment
 - 1. goseq package

Howto

- Organize your files by directory
 - 1-reads, 2-align, 3-qc
- Align reads using bowtie
 - Sample alignment w/ known reference

Analysis

- My directory
 - /u/home/eeskin/richardw/collaboratory/workshop3
- 1-reads: directory of raw reads (paired end)
- 2-align: directory for aligning reads into BAM files
- 3-deseq: directory to run DESeq
- gtf: contains a human GTF file
- Indexes: contains the bowtie hg19 index

Reads

- Reads will come from the sequencers as either QSEQ or FASTQ files. If QSEQ, you can convert to FASTQ
- Paired end reads come in pairs
- FASTQ
 - 4 lines per read (ID, bases, <forgot>, quality scores)

Align reads

- Use tophat to align
- On hoffman, we need to module load tophat and its underlying tools
 - -module load tophat/1.3.3
 - -module load bowtie/0.12.8
 - moduel load samtools
- We also need a
 - genome reference (hg19)
 - GTF file

Align reads

- I provided a script that runs tophat/bowtie
 - run_tophat.sh
- To submit to cluster, run qsub:
 - -qsub --cwd --V run_tophat.sh
- Takes time to align!
- Will result in accepted_hits.bam file

Qsub commands

```
# to submit a script using qsub
qsub <script>
# list qsub jobs
qstat
# kill a job
qdel <jobid>
```

DESeq

- The default version of R is 2.12, but we will want a more recent version
 - -module load R/2.15.1
- You can run R interactively, but for a real dataset, you'll want to write a script and run it batchmode
 - deseq demo.R

Bioconductor install notes

- On hoffman2, you cannot write to system files, so package install will go to your home directory
- biocLite() works for most things
- Found error with locfit (an R package) when using DESeq
 - To resolve, install/update the R package for locfit
 - install.packages(locfit)

CUFFLINKS

Tophat/cufflinks

- Analysis proceeds the same way as DESeq
- Take raw reads and align
- Perform differential expression using Cufflinks

References

- Qsub parameters
 - http://hpc.ucla.edu/hoffman2/computing/sge_qrsh.php
- Hoffman2

R/Bioconductor